

MG Chemicals UK Limited Version No: A-1.01

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 14/04/2023 Revision Date: 06/07/2023 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name 8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)		
Synonyms 8329HTC-Liquid; 8329HTC-50ML, 8329HTC-400ML		
Proper shipping name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)		
Other means of identification 8329HTC14042023 UFI: QKQ0-005J-T007-DWQD		

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	poxy resin for use with hardeners			
Uses advised against	No specific uses advised against are identified.			

1.3. Details of the manufacturer or supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	MG Chemicals (Head office)	
Address Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom		1210 Corporate Drive Ontario L7L 5R6 Canada	1210 Corporate Drive Ontario L7L 5R6 Canada	
Telephone	+(44) 1663 362888	+(1) 800-340-0772	+(1) 800-340-0772	
Fax	Not Available	+(1) 800-340-0773	+(1) 800-340-0773	
Website Not Available		www.mgchemicals.com	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	
Emergency telephone numbers	+(44) 20 35147487	
Other emergency telephone numbers	+(0) 800 680 0425	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H315 - Skin Corrosion/Irritation Category 2, H319 - Serious Eye Damage/Eye Irritation Category 2, H317 - Sensitisation (Skin) Category 1, H410 - Hazardous to the Aquatic Environment Long-Term Hazard Category 1
Legend:	1. Classified by Chernwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)	

Warning

Signal word

Hazard statement(s)		
H315 Causes skin irritation.		
H319	Causes serious eye irritation.	
H317	May cause an allergic skin reaction.	
H410	Very toxic to aquatic life with long lasting effects.	

EUH210	Safety data sheet available on request.	
Precautionary statement(s) Prevention		
P280	r protective gloves, protective clothing, eye protection and face protection.	
P261	Avoid breathing mist/vapours/spray.	
P273	Avoid release to the environment.	
P264	Wash all exposed external body areas thoroughly after handling.	
P272	Contaminated work clothing should not be allowed out of the workplace.	

Precautionary statement(s) Response

P302+P352	ON SKIN: Wash with plenty of water.		
P305+P351+P338	N EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.		
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.		
P337+P313	If eye irritation persists: Get medical advice/attention.		
P362+P364	Take off contaminated clothing and wash it before reuse.		
P391	P391 Collect spillage.		

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Inhalation, skin contact and/or ingestion may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the respiratory system*.

Limited evidence of a carcinogenic effect*.

Possible respiratory sensitizer*.

May possibly affect fertility*.

bisphenol A diglycidyl ether resin, solid	Listed in the Europe Regulation (EU) 2018/1881 Specific Requirements for Endocrine Disruptors
aluminium powder uncoated	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	SCL / M-Factor	Nanoform Particle Characteristics
1.24304-00-5 2.246-140-8 3.Not Available 4.Not Available	30-50	aluminium nitride	Flammable Solids Category 2, Substances and Mixtures which in Contact with Water Emit Flammable Gases Category 3, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1; H228, H261, H314, H318, EUH029 ^[1]	Not Available	Not Available
1.25068-38-6 2.500-033-5 3.603-074-00-8 4.Not Available	25-45	bisphenol A diglycidyl ether resin, solid ^[e]	Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Sensitisation (Skin) Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 2; H315, H319, H317, H411 ^[2]	Eye Irrit. 2; H319: C ≥ 5 % Skin Irrit 2; H315: C ≥ 5 %	Not Available
1.7429-90-5 2.231-072-3 3.013-001-00-6 013-002-00-1 4.Not Available	25-45	aluminium powder uncoated	Pyrophoric Solids Category 1, Substances and Mixtures which in Contact with Water Emit Flammable Gases Category 2; H250, H261 ^[2]	Not Available	Not Available
1.112945-52-5 2.231-545-4 3.Not Available 4.Not Available	1-5	silica amorphous	EUH210 ^[1]	Not Available	Not Available
Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties			lassification drawn		

SECTION 4 First aid measures

Page 3 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. Inhalation of vapours or aerosols (mists, fumes) may cause lung oedema. Corrosive substances may cause lung damage (e.g. lung oedema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorised by him/her. (ICSC13719)
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- Manifestation of aluminium toxicity include hypercalcaemia, anaemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterixis, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminium.

[Ellenhorn and Barceloux: Medical Toxicology] for irritant gas exposures:

- the presence of the agent when it is inhaled is evanescent (of short duration) and therefore, cannot be washed away or otherwise removed
- arterial blood gases are of primary importance to aid in determination of the extent of damage. Never discharge a patient significantly exposed to an irritant gas without obtaining an arterial blood sample.
- supportive measures include suctioning (intubation may be required), volume cycle ventilator support (positive and expiratory pressure (PEEP), steroids and antibiotics, after a culture is taken
- ▶ If the eyes are involved, an ophthalmologic consultation is recommended

Occupational Medicine: Third Edition; Zenz, Dickerson, Horvath 1994 Pub: Mosby

Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelling operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology]

- For acute or short term repeated exposures to ammonia and its solutions:
- Mild to moderate inhalation exposures produce headache, cough, bronchospasm, nausea, vomiting, pharyngeal and retrosternal pain and conjunctivitis. Severe inhalation produces laryngospasm, signs of upper airway obstruction (stridor, hoarseness, difficulty in speaking) and, in excessively, high doses, pulmonary oedema.
- Warm humidified air may soothe bronchial irritation.
- * Test all patients with conjunctival irritation for corneal abrasion (fluorescein stain, slit lamp exam)
- Dyspneic patients should receive a chest X-ray and arterial blood gases to detect pulmonary oedema.

SECTION 5 Firefighting measures

5.1. Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

- DO NOT USE WATER, CO2 or FOAM.
 - Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
 - · Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
 - Chemical reaction with CO2 may produce flammable and explosive methane.
- ▶ If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- DO NOT use halogenated fire extinguishing agents.

5.2. Special hazards arising from the substrate or mixture

Page 4 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Fire Incompatibility	 Reacts with acids producing flammable / explosive hydrogen (H2) gas Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
. Advice for firefighters	
Fire Fighting	 When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed or the silica particles. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. DO NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present. Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May react explosively with water. May pay BEIGNITE after fire is extinguished. Will burn with intense heat. Note: Metal dust fires are slow moving but intense and difficult to extinguish. Containers may explode on heating. Dusts or fumes may form explosive mixtures with air. Gases generated in fire may be poisonous, corrosive or irritating. Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse. When heated to extreme tempe
	metal oxides other pyrolysis products typical of burning organic material. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	 Environmental hazard - contain spillage. Clean up all spills immediately. Avoid contact with skin and eyes. Wear impervious gloves and safety goggles. Trowel up/scrape up. Place spilled material in clean, dry, sealed container. Flush spill area with water.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by all means available, spillage from entering drains or water courses. Consider evacuation (or protect in place). No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Contain or absorb spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Collect solid residues and seal in labelled drums for disposal.

Page 5 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Wash area and prevent runoff into drains.
After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
If contamination of drains or waterways occurs, advise emergency services.
Environmental hazard - contain spillage.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1.	Precautions	for	safe	handling
------	-------------	-----	------	----------

Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Fire and explosion protection	See section 5
Other information	Consider storage under inert gas. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Suitable container	 Metal can or drum Packaging as recommended by manufacturer. Chark all containers are clearly labelled and free free lacks.
Suitable container	

Page 6 of 23 8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

	 within the explosive limits can occur above aqueous solutions of varying strengths. Avoid contact with sodum hydroxide, iron and cadmium. Several incidents involving sudden 'tooling' (occasionally violent) of a concentrated solution (d. 0.880, 35 wt %) have occurred when screw-capped withorbesters are operation and botting. The effect is particularly marked with winchesters filled in winter and opened in summer. Armonoia attacks some coatings, plastics and rubbar. Attacks cogner, torizo, pross alumnium, steel and their alloys. Reacts slowly with weter: CAUTION contaminaton with moisture will liberate explosive hydrogen gas, causing pressure build up in sealed containers. Statistics contaminaton with moisture will liberate explosive hydrogen gas, causing pressure build up in sealed containers. Statistics and the traditional of produce align to traditional gas. react with hydrofluoria cald to produce align to traditional gas. react with hydrofluoria cald to produce align to traditional gas. react with hydrofluoria cald to produce align to traditional gas. may react with fluorine, rubrates. Sagregate from alcohol, water. Avoid storg acids, bases. Glyddy tahes: Glyddy tahes: Teact vight must align and the fluorine containers. Sagregate from alcohol, water. Avoid storg acids, bases. Glyddy tahes: may polymerise in contact with heat, organic and inorganic free radical producing initiators may polymerise in contact with heat, angranics and rubbies, subrates, and halles, alkelis, ammune resulting. Do NOT researches on plastics, coatings, and rubbie containers. Material trade some forms of plastics, coatings, and rubbie containers. Material rubbie provides on storage in air light, sunlight, uvil ight adds, alkelis, ammunu presultate, bromine dioxide that alkelia robates presultang and bater
	 Elemental metals may react with azo/diazo compounds to form explosive products. Some elemental metals form explosive products with halogenated hydrocarbons.
Hazard categories in accordance with Regulation (EC) No 1272/2008	E1: Hazardous to the Aquatic Environment in Category Acute 1 or Chronic 1
Qualifying quantity (tonnes) of dangerous substances as referred to in Article 3(10) for the application of	E1 Lower- / Upper-tier requirements: 100 / 200

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
aluminium nitride	Inhalation 0.47 mg/m³ (Systemic, Chronic) Inhalation 0.034 mg/m³ (Local, Chronic)	1.98 μg/L (Water (Fresh)) 0.2 μg/L (Water - Intermittent release) 1.98 μg/L (Water (Marine)) 1 mg/L (STP)
aluminium powder uncoated	Inhalation 3.72 mg/m³ (Systemic, Chronic) Inhalation 3.72 mg/m³ (Local, Chronic) Oral 3.95 mg/kg bw/day (Systemic, Chronic) *	74.9 μg/L (Water (Fresh)) 20 mg/L (STP)
silica amorphous	Inhalation 0.3 mg/m ³ (Local, Chronic)	Not Available

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes

Page 7 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Source	Ingredient	Material na	me	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs).	aluminium powder uncoated	Aluminium n	Aluminium metal: respirable dust		Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	aluminium powder uncoated	Aluminium n	Aluminium metal: inhalable dust		Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	silica amorphous	Diatomaceo dust	Diatomaceous earth, natural, respirable dust		Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	silica amorphous	Silica, fused	Silica, fused respirable dust		Not Available	Not Available	Not Available
Emergency Limits							
Ingredient	TEEL-1		TEEL-2		TEEL-3		
bisphenol A diglycidyl ether resin, solid	90 mg/m3		990 mg/m3		5,900 mg/m3	3	

30 mg/m3	330 mg/m3		2,000 mg/m3
18 mg/m3	200 mg/m3		1,200 mg/m3
18 mg/m3	100 mg/m3		630 mg/m3
120 mg/m3	1,300 mg/m3		7,900 mg/m3
45 mg/m3	500 mg/m3		3,000 mg/m3
18 mg/m3	740 mg/m3		4,500 mg/m3
Original IDL H		Revised IDI H	
onginariben		Revised IDEI	
Not Available		Not Available	
Not Available		Not Available	
Not Available		Not Available	
	18 mg/m3 18 mg/m3 120 mg/m3 45 mg/m3 18 mg/m3 Original IDLH Not Available Not Available	18 mg/m3 200 mg/m3 18 mg/m3 100 mg/m3 120 mg/m3 1,300 mg/m3 45 mg/m3 500 mg/m3 18 mg/m3 740 mg/m3 Original IDLH Not Available	18 mg/m3 200 mg/m3 18 mg/m3 100 mg/m3 18 mg/m3 100 mg/m3 120 mg/m3 1,300 mg/m3 45 mg/m3 500 mg/m3 18 mg/m3 740 mg/m3 Revised IDLH Not Available Not Available

Occupational Exposure Banding				
Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit		
aluminium nitride	С	> 0.1 to \leq milligrams per cubic meter of air (mg/m ³)		
bisphenol A diglycidyl ether resin, solid	E ≤ 0.01 mg/m³			
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.			

Not Available

MATERIAL DATA

silica amorphous

For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control. [Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

3,000 mg/m3

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550 As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

For amorphous crystalline silica (precipitated silicic acid):

Amorphous crystalline silica shows little potential for producing adverse effects on the lung and exposure standards should reflect a particulate of low intrinsic toxicity. Mixtures of amorphous silicas/ diatomaceous earth and crystalline silica should be monitored as if they comprise only the crystalline forms.

The dusts from precipitated silica and silica gel produce little adverse effect on pulmonary functions and are not known to produce significant disease or toxic effect.

IARC has classified silica, amorphous as Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

8.2. Exposure controls

8.2.1. Appropriate engineering controls	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk.
---	--

Also devide location of marked according of degrad by along the substrate activation of degrad and substrate hadron of degrad and substrate activation activation of degrad and substrate activation of degrad and substrate activation activation of degrad and substrate activation activatio degrad and substrate activation of degrad and substrate		
• Enclose in shorted on the declarage of the regulated areas, non-regulated areas on the stering origination of this constraintight of the series of the		 "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area. Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system. Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within. Open-vessel systems are prohibited. Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the
Image: Section is a personal procession of the section of		 Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas). Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air. Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 0.76 m/sec with a minimum of 0.64 m/sec. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and
Even in a population is populated by a special hazard; soft contact lenses may absoft and concentrate initiants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a rowew of lens absorption, and absorption to the class of chemical posteriors. Modula and first-add personnel should be removed in a distribution of the class of chemical posteriors. Modula and first-add personnel should be removed in a more contact lenge or person contact lenge or pers	measures, such as personal	
NOTE: The material may produce skin sensitiation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. * Contaminated learner tierms, such as shoes, belts and watch-bands should be removed and destroyed. When handling fluid-grade apoxyre reises ware chemically protective gloves , boots and aprons. The performance, based on breakthrough times, of: • Entry Viny Acoho (EVAL Lambe) is generally excellent • Budy Rubber (RSN). From excellent to fair. • Noperane from excellent to fair. • Polyviny (PCV) from excellent to fair. • Polyving (PCV) from excellent to fair. • Do Not use control relative (which absorb the resin, adural rubber (fatex), medical or polyethylene gloves (which absorb the resin, include both the resin and any fazdener, individually and collectively). • Do Not use barrier creams containing emulsified fats and olis as these may absorb the resin; slicone-based barrier creams should be reviewed priot to use. <th>Eye and face protection</th> <th> Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or </th>	Eye and face protection	 Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or
• The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gives and other protective equipment. It avoid all possible skin contact. • Contaminated leather times, such as shous, belts and watch-bands should be removed and destroyed. When handing liquid grade geouxy resins ward chemically protective gives, boots and aprons. The performance, based on breakthrough times, of: • Divinite Buyt Mobber (IRM) tome scellent to poor • Numite Buyt Mubber (IRM) tome scellent to poor • Numite Buyt Mubber (IRM) tome scellent to poor • Delyviny (IPC) from excellent to poor • Addimed in ASTM F-739-36 • Excellent threating time > 20 min • Good breakthrough time > 20 min • Good breakthrough time > 20 min • Good breakthrough time > 20 min • Do Not use to scellent to poor • Addimed in ASTM F-739-36 • Carbon Pathrough time > 20 min • Do Not use to scoll not relative (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylere gives (which absorb the resin). • Do Not use to scoll not relative (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylere gives (which absorb the resin). • Do Not use brainer creams containing emulalified tats and oils as these may absorb the resin; silcone-based barrier creams should be reviewed prior to use. • Body protection	Skin protection	See Hand protection below
 Characterization Contempote the provided with and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Overalls. P.V.C. apron. Barrier cream. 	Hands/feet protection	 The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. When handling liquid-grade epoxy resins wear chemically protective gloves , boots and aprons. The performance, based on breakthrough times, of: Ethyl Vinyl Alcohol (EVAL laminate) is generally excellent Butyl Rubber ranges from excellent to good Nitrile Butyl Rubber (NBR) from excellent to fair. Neoprene from excellent to fair Polyvinyl (PVC) from excellent to poor As defined in ASTM F-739-96 Excellent breakthrough time > 20 min Good breakthrough time > 20 min Fair breakthrough time > 20 min Poor glove material degradation Gloves should be tested against each resin system prior to making a selection of the most suitable type. Systems include both the resin and any hardener, individually and collectively) DO NOT use cotton or leather (which absorb and concentrate the resin), natural rubber (latex), medical or polyethylene gloves (which absorb the resin). DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use. Replacement time should be considered when selecting the most appropriate glove. It may be more effective to select a glove with lower
 (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination arcivities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Prior to removing protective garments the emplo	Body protection	See Other protection below
 Skin cleansing cream. 	Other protection	 (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. Priv.C apron. Barrier cream.
Continued		

Eye wash unit.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.

The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

· Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

• The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
 Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under

appropriate government standards such as NIOSH (US) or CEN (EU)

· Use approved positive flow mask if significant quantities of dust becomes airborne.

· Try to avoid creating dust conditions.

Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required.

Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates.

Filtration rate: Filters at least 99.95% of airborne particles

Suitable for:

· Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.

- · Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.
- · Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

· Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos

Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Moisture sensitive. In chemistry, a nitride is a compound of nitrogen where nitrogen has a formal oxidation state of -3. Nitrides are a large class of compounds with a wide range of properties and applications. The nitride ion, N3-, is never encountered in protic solution because it is so basic that it would be protonated immediately. Its ionic radius is estimated to be 140 pm Nitrides can be classified into three general categories: ionic, interstitial, and covalent. Alkali and alkaline earth nitrides are called as ionic nitrides. Alkaline earth nitrides are formed with the formula M3N2 (for example, Ca3N2, Ba3N2, Mg3N2). These compounds undergo hydrolysis to produce ammonia and the metal hydroxide. Transition metal nitrides form compounds with the formula MN, M2N, and M4N. For the group 3 metals, ScN and YN are both known. Group 4, 5, and 6 transition metals (the titanium, vanadium and chromium groups) all form nitrides They are refractory, with high melting point and are chemically stable. Representative is titanium nitride. Sometimes these materials are called "interstitial nitrides". They constitute the largest group of nitrides and are extremely hard, and usually have metallic luster and high conductivities. The nitrides of p-block elements are called as covalent nitrides. These have wide range of properties depending on nitrogen bonding. Nitrides of the group 7 and 8 transition metals decompose readily. For example, iron nitride, Fe2N decomposes at 200 deg C. Platinum nitride and osmium nitride may contain N2 units, and as such should not be called nitrides. Nitrides of heavier members from group 11 and 12 are less stable than copper nitride, Cu3N and Zn3N2: dry silver nitride (Ag3N) is a contact explosive which may detonate from the slightest touch, even a falling water droplet Black		
Physical state	Black, Non Slump Paste	Relative density (Water = 1)	>1.8
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available

pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	150	Molecular weight (g/mol)	Not Available
Flash point (°C)	250	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Available	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	1	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Not normally a hazard due to non-volatile nature of product Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure. The highly irritant properties of ammonia vapour result as the gas dissolves in mucous fluids and forms irritant, even corrosive solutions. Inhalation of high concentrations > 5000 ppm may cause breathing difficulty, tightness in chest, pulmonary oedema (lung damage), weak pulse and cyanosis. Prolonged or regular minor exposure to the vapour may cause persistent irritation of the eyes, nose and upper respiratory tract. Massive ammonia exposures may produce chronic airway hyperactivity and asthma with associated pulmonary function changes. The average nasal retention of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual. Acute toxic responses to aluminium are confined to the more soluble forms. Male rats exposed to a single oral dose of bisphenol A diglycidyl ether (BADGE) at 750, 1000, and 2000 mg/kg/day showed a significantly increase in the number of immature and maturing sperm on the testis. There were no significant differences with respect to sperm head count, sperm motility, and sperm abnormality in the BADGE treatment groups

Page 11 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

	Human metabolism allows detoxification of ammonia, however toxic effects appear if this mechanism is overwhelmed by other than small doses. Ingestion of ammonium salts may produce local irritation, nausea, vomiting and diarrhoea. Very large doses of ammonium salts may produce a drop in blood pressure, collapse, central nervous system disorders, spasms, narcosis, respiratory paralysis and haemolysis. Large doses of ammonium salts may be sufficiently absorbed to produce diuresis and systemic ammonia poisoning. Such poisonings have been described after parenteral administration of the salts and produce flaccidity of facial muscles, tremor, generalised discomfort, anxiety and impairment of motor performance, recognition and of critical flicker fusion. Such a clinical picture resembles that found in terminal liver failure - elevated levels of ammonia are found regularly in advanced liver disease.
Skin Contact	The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Mild irritation is produced on moist skin when vapour concentrations of ammonia exceed 10000 ppm. High vapour concentrations (>30000 ppm) or direct contact with solutions produces severe pain, a stinging sensation, burns and vesiculation and possible brown stains. Extensive burning may be fatal. Vapour exposure may, rarely, produce urticaria. The material produces mild skin irritation; evidence exists, or practical experience predicts, that the material either + produces mild inflammation of the skin in a substantial number of individuals following direct contact, and/or + produces significant, but mild, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.
Chronic	Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of inducidus, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsive. Substances there exposed to a sensitiser will become hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. Buydences possitisers of the substances that can cause occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsive. Buydences should receive particular attention when risk management is being considered. Health surveillance is appropriate consultations should receive particular attention when risk management is being considered. Health surveillance is appropriate consultation with an occupational health professional over the quere of risk and level of surveillance. On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancet. Chronic exposure to aluminau workel of particle size 1.2 microns did not produce significant systemic or respiratory system effects in workers. Epidemiologi surves have indicated an excess of normalignant respiratory sites is not. The sensitive of the subsite of the submitted from subsites that and the development of cancet. Chronic exposure to aluminau workel of the tings, is associated with a process in worker separatory system effects in workers. Epidemiologi surves have indicated an excess of normalignant respiratory sites in this termeter and the development of acuret. The hyper-

their classification as a metalloestrogen. Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer.

After absorption, aluminium distributes to all tissues in animals and humans and accumulates in some, in particular bone. The main carrier of the aluminium ion in plasma is the iron binding protein, transferrin. Aluminium can enter the brain and reach the placenta and foetus. Aluminium may persist for a very long time in various organs and tissues before it is excreted in the urine. Although retention times for aluminium appear to be longer in humans than in rodents, there is little information allowing extrapolation from rodents to the humans.

At high levels of exposure, some aluminium compounds may produce DNA damage in vitro and in vivo via indirect mechanisms. The database on carcinogenicity of aluminium compounds is limited. No indication of any carcinogenic potential was obtained in mice given aluminium potassium sulphate at high levels in the diet.

Aluminium has shown neurotoxicity in patients undergoing dialysis and thereby chronically exposed parenterally to high concentrations of aluminium. It has been suggested that aluminium is implicated in the aetiology of Alzheimer s disease and associated with other neurodegenerative diseases in humans. However, these hypotheses remain controversial. Several compounds containing aluminium have the potential to produce neurotoxicity (mice, rats) and to affect the male reproductive system (dogs). In addition, after maternal exposure they have shown embryotoxicity (mice) and have affected the developing nervous system in the offspring (mice, rats). The available studies have a number of limitations and do not allow any dose-response relationships to be established. The combined evidence from several studies in mice, rats and dogs that used dietary administration of aluminium compounds produce lowest-observed-adverse-effect levels (LOAELs) for effects on neurotoxicity, testes, embryotoxicity, and the developing nervous system of 52, 75, 100, and 50 mg aluminium/kg bw/day, respectively. Similarly, the lowest no-observed-adverse-effect levels (NOAELs) for effects on these endpoints were reported at 30, 27, 100, and for effects on the developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example, found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium in levels at critical concentrations.

Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of "tau" a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA).

Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995] Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. The presence of the p-hydroxy group on the benzene rings is though to be responsible for the oestradiol mimicry.

. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and anniotic fluid of the population, was sufficient to produce the effects. The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that "it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades"

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which "...merits concern among scientists and public health officials"

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in

human breast epithelial cells. [whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4,4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

BPA belongs to the list of compounds having this property as the rodent models have shown that BPA exposure is linked with increased body weigh (obesogens)t. Several mechanisms can help explain the effect of BPA on body weight increase. A possible mechanism leading to triglyceride accumulation is the decreased production of the hormone adiponectin from all human adipose tissue tested when exposed to very low levels (below nanomolar range) of BPA in cell or explant culture settings. The expression of leptin as well as several enzymes and transcription factors is also affected by BPA exposure in vivo as well as in vitro. Together, the altered expression and activity of these important mediators of fat metabolism could explain the increase in weight following BPA exposure in rodent models. These results also suggest that, together with other obesogens, low, environmentally relevant levels of BPA may contribute to the human obesity phenomenon.

Page	13	of	23	
------	----	----	----	--

The synthetic, amorphous silicas are believed to represent a very greatly reduced silicosis hazard compared to crystalline silicas and are considered to be nuisance dusts.

When heated to high temperature and a long time, amorphous silica can produce crystalline silica on cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling pulmonary fibrosis that may take years to develop. Discrepancies between various studies showing that fibrosis associated with chronic exposure to amorphous silica and those that do not may be explained by assuming that diatomaceous earth (a non-synthetic silica commonly used in industry) is either weakly fibrogenic or nonfibrogenic and that fibrosis is due to contamination by crystalline silica content

Repeated exposure to synthetic amorphous silicas may produce skin dryness and cracking.

Available data confirm the absence of significant toxicity by oral and dermal routes of exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. Differences in values may be due to particle size, and therefore the number of particles administered per unit dose. Generally, as particle size diminishes so does the NOAEL/ LOAEL. Exposure produced transient increases in lung inflammation, markers of cell injury and lung collagen content. There was no evidence of interstitial pulmonary fibrosis.

All glycidyl ethers show genotoxic potential due their alkylating properties. Those glycidyl ethers that have been investigated in long term studies exhibit more or less marked carcinogenic potential. Alkylating agents may damage the stem cell which acts as the precursor to components of the blood. Loss of the stem cell may result in pancytopenia (a reduction in the number of red and white blood cells and platelets) with a latency period corresponding to the lifetime of the individual blood cells. Granulocytopenia (a reduction in granular leukocytes) develops within days and thrombocytopenia (a disorder involving platelets), within 1-2 weeks, whilst loss of erythrocytes (red blood cells) need months to become clinically manifest. Aplastic anaemia develops due to complete destruction of the stem cells.

Reported adverse effects in laboratory animals include sensitization, and skin and eye irritation, as well as mutagenic and tumorigenic activity. Testicular abnormalities (including testicular atrophy with decreased spermatogenic activity) following exposure to glycidyl ethers have been reported. Haemopoietic abnormalities following exposure to glycidyl ethers, including alteration of the leukocyte count, atrophy of lymphoid tissue, and bone marrow cytotoxicity have also been reported. These abnormalities were usually observed along with pneumonia and/or toxemia, and therefore may be secondary effects. However, especially in light of the generalized reduction in leukocytes and the atrophy of lymphoid tissues, the observed haemopoietic abnormalities may have been predisposing factors to pneumonia. While none of the individual research reports are conclusive with respect to the ability of glycidyl ethers to produce permanent changes to the testes or haemopoietic system in laboratory animals, the pattern of displayed effects is reason for concern

Glycidyl ethers have been shown to cause allergic contact dermatitis in humans. Glycidyl ethers generally cause skin sensitization in experimental animals. Necrosis of the mucous membranes of the nasal cavities was induced in mice exposed to allyl glycidyl ether. A study of workers with mixed exposures was inconclusive with regard to the effects of specific glycidyl ethers. Phenyl glycidyl ether, but not n-butyl glycidyl ether, induced morphological transformation in mammalian cells in vitro. n-Butyl glycidyl ether induced micronuclei in mice in vivo following intraperitoneal but not oral administration. Phenyl glycidyl ether did not induce micronuclei or chromosomal aberrations in animal cells in vitro. Alkyl C12 or C14 glycidyl ether did not induce DNA damage in cultured human cells or mutation in Drosophila. The glycidyl ethers were generally mutagenic to bacteria. Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

8329HTC Super Thermally	TOXICITY	IRRITATION
Conductive Adhesive (Part A)	Not Available	Not Available
	ΤΟΧΙΟΙΤΥ	IRRITATION
aluminium nitride	Oral (Rat) LD50: 3450 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙϹΙΤΥ	IRRITATION
bisphenol A diglycidyl ether resin, solid	dermal (rat) LD50: >1200 mg/kg ^[2]	Not Available
,	Oral (Mouse) LD50; >500 mg/kg ^[2]	
	ΤΟΧΙΟΙΤΥ	IRRITATION
aluminium powder uncoated	Inhalation(Rat) LC50: >2.3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	ΤΟΧΙΟΙΤΥ	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): non-irritating ** [Grace]
silica amorphous	Inhalation(Rat) LC50: >0.09<0.84 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50: >1000 mg/kg ^[1]	Skin (rabbit): non-irritating *
		Skin: no adverse effect observed (not irritating) $\left[^{1}\right]$
Legend:	1 Value obtained from Europe ECHA Registered Substance	es - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise

8329HTC Super Thermally Conductive Adhesive (Part A)	In mice, dermal application of bisphenol A diglycidyl ether (BADGE) (1, 10, or 100 mg/kg) for 13 weeks produced mild to moderate chronic active dermatitis. At the high dose, spongiosis and epidermal micro abscess formation were observed. In rats, dermal application of BADGE (10, 100, or 1000 mg/kg) for 13 weeks resulted in a decrease in body weight at the high dose. The no-observable effect level (NOEL) for dermal exposure was 100 mg/kg for both sexes. In a separate study, application of BADGE (same doses) five times per week for -13 weeks not only caused a decrease in body weight but also produced chronic dermatitis at all dose levels in males and at >100 mg/kg in females (as well as in a satellite group of females given 1000 mg/kg). Reproductive and Developmental Toxicity: BADGE (50, 540, or 750 mg/kg) administered to rats via gavage for 14 weeks (P1) or 12 weeks (P2) produced decreased body weight in all males at the mid dose and in both males and females at the high dose, but had no reproductive effects. The NOEL for reproductive effects was 750 mg/kg. Carcinogenicity: IARC concluded that "there is limited evidence for the carcinogenicity of bisphenol A diglycidyl ether in experimental animals." Its overall evaluation was "Bisphenol A diglycidyl ether is not classifiable as to its carcinogenicity to humans (Group 3). In a lifetime tumourigenicity study in which 90-day-old C3H mice received three dermal applications per week of BADGE (undiluted dose) for 23 months, only one out of 32 animals developed a papilloma after 16 months. A retest, in which skin paintings were done for 27 months, however.

Page 14 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

	produced no tumours (Weil et al., 1963). In another lifetime skin-painting study, BADGE (dose n.p.) was also reported to be noncarcinogenic to the skin of C3TRL6 mice (Holland et al., 1979; circled by Canter et al., 1986). In a two-year bioassy, lemale Fisher 344 rats demail versioned to BADGE (1, 100, or 1000 mg/kg) showed no evidence of dermal carcinogenicity but did have low incidences of tumours in the oral cavity (U.S. EFA, 1997). Genotoxicity: In S. typhimurum strains TA100 and TA1536, BADGE (1, 010, 000 gg/late) was mutagenic with and without S9; negative results were obtained in TA38 and TA1537 (Canter et al., 1986; Pulin, 1977). In a spot test, BADGE (10.05 or 10.00 mg/ late) to show mutagenicity in strains TA96 and TA1503 (Canter et al., 1986; Pulin, 1977). In a spot test, BADGE (10.05 or 10.00 mg/ late) to show mutagenicity in strains TA96 and TA1503 (Canter et al., 1986; Pulin, 1977). In a spot test, BADGE (10.05 or 10.00 mg/ late) task bore and babel date sass (1000 mg/kg). Immunotoxicity: Intracutaneous injection of diluted BADGE (0.1 mL) three times per week on alternate days (total of 8 injections) followed by a three-week incubation period and a challenge dose produced sensitisation in 19 of 20 guinea pigs - consumer exposure to BADGE is almost exclusively from migration of BADGE from can coatings into food. Using a worst-case scenario that assumes BADGE migrates and task ognes of dosing beyort and tory day body weight/day. A review of one- and two-generation reproduction studies and developmental investodical submissation of UND material back of a dovidual is approximately 0.16 ug/kg body weight/day. A review of one- and two-generation reproduction subles and developmental investodical submissation of data from sub-chronic toxicological studies support a tory developmental investodical studies support a 0004L of 50 mg/kg/body weight/day from the 90-day study, and NOAEL of 15 mg/kg body weight/day from the 90-day study, and NOAEL of 50 mg/kg/body weight day from the 90-d
BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID	Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit many common characteristics with respect to animal toxicology. One such oxirane is ethyloxirane; data presented here may be taken as representative. CAUTION: Epoxy resin products may contain sensitising glycidyl ethers, even when these are not mentioned in the information given for the product. The likely occurrence of these is greatly reduced in solid grades of the resin. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of
SILICA AMORPHOUS	dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Reports indicate high/prolonged exposures to amorphous silicas induced lung fibrosis in experimental animals; in some experiments these effects were reversible. [PATTYS] The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadeguate or limited in animal testing.
8329HTC Super Thermally Conductive Adhesive (Part A) & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone- dependent manner. However, BPA and several other derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl ring and the bridging alkyl moiety markedly influence the activities. Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuratio
8329HTC Super Thermally Conductive Adhesive (Part A) & SILICA AMORPHOUS	For silica amorphous: Derived No Adverse Effects Level (NOAEL) in the range of 1000 mg/kg/d. In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little

evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin.

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals.

After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification.

Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause dryness and cracking, SAS is not a skin or eye irritant, and it is not a sensitiser.

Repeated-dose and chronic toxicity studies confirm the absence of toxicity when SAS is swallowed or upon skin contact.

Long-term inhalation of SAS caused some adverse effects in animals (increases in lung inflammation, cell injury and lung collagen content), all of which subsided after exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted with SAS in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. The difference in values may be explained by different particle size, and therefore the number of particles administered per unit dose. In general, as particle size decreases so does the NOAEL/LOAEL.

Neither inhalation nor oral administration caused neoplasms (tumours). SAS is not mutagenic in vitro. No genotoxicity was detected in in vivo assays. SAS does not impair development of the foetus. Fertility was not specifically studied, but the reproductive organs in long-term studies were not affected.

For Synthetic Amorphous Silica (SAS)

Repeated dose toxicity

Oral (rat), 2 weeks to 6 months, no significant treatment-related adverse effects at doses of up to 8% silica in the diet.

Inhalation (rat), 13 weeks, Lowest Observed Effect Level (LOEL) =1.3 mg/m3 based on mild reversible effects in the lungs. Inhalation (rat), 90 days, LOEL = 1 mg/m3 based on reversible effects in the lungs and effects in the nasal cavity.

For silane treated synthetic amorphous silica:

Repeated dose toxicity: oral (rat), 28-d, diet, no significant treatment-related adverse effects at the doses tested.

There is no evidence of cancer or other long-term respiratory health effects (for example, silicosis) in workers employed in the manufacture of SAS. Respiratory symptoms in SAS workers have been shown to correlate with smoking but not with SAS exposure, while serial pulmonary function values and chest radiographs are not adversely affected by long-term exposure to SAS.

For aluminium compounds:

Aluminium present in food and drinking water is poorly absorbed through the gastrointestinal tract. The bioavailability of aluminium is dependent on the form in which it is ingested and the presence of dietary constituents with which the metal cation can complex Ligands in food can have a marked effect on absorption of aluminium, as they can either enhance uptake by forming absorbable (usually water soluble) complexes (e.g., with carboxylic acids such as citric and lactic), or reduce it by forming insoluble compounds (e.g., with phosphate or dissolved silicate). Considering the available human and animal data it is likely that the oral absorption of aluminium can vary 10-fold based on chemical form alone. Although bioavailability appears to generally parallel water solubility, insufficient data are available to directly extrapolate from solubility in water

to bioavailability. For oral intake from food, the European Food Safety Authority (EFSA) has derived a tolerable weekly intake (TWI) of 1 milligram (mg) of aluminium per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1 % for all aluminium compounds

autininum per kilogram of bodyweight. In its health assessment, the EFSA states a medium bioavailability of 0.1% for all autininum compounds which are ingested with food. This corresponds to a systemically available tolerable daily dose of 0.143 microgrammes (µg) per kilogramme (kg) of body weight. This means that for an adult weighing 60 kg, a systemically available dose of 8.6 µg per day is considered safe. Based on a neuro-developmental toxicity study of aluminium citrate administered via drinking water to rats, the Joint FAO/WHO Expert

Committee on Food Additives (JECFA) established a Provisional Tolerable Weekly Intake (PTWI) of 2 mg/kg bw (expressed as aluminium) for all aluminium compounds in food, including food additives. The Committee on Toxicity of chemicals in food, consumer products and the environment (COT) considers that the derivation of this PTWI was sound and that it should be used in assessing potential risks from dietary exposure to aluminium.

The Federal Institute for Risk Assessment (BfR) of Germany has assessed the estimated aluminium absorption from antiperspirants. For this purpose, the data, derived from experimental studies, on dermal absorption of aluminium from antiperspirants for healthy and damaged skin was used as a basis. At about 10.5 µg, the calculated systemic intake values for healthy skin are above the 8.6 µg per day that are considered safe for an adult weighing 60 kg. If aluminium -containing antiperspirants are used on a daily basis, the tolerable weekly intake determined by the EFSA is therefore exceeded. The values for damaged skin, for example injuries from shaving, are many times higher. This means that in case of daily use of an aluminium-containing antiperspirant alone, the TWI may be completely exhausted. In addition, further aluminium absorption sources such as food, cooking utensils and other cosmetic products must be taken into account Systemic toxicity after repeated exposure

No studies were located regarding dermal effects in animals following intermediate or chronic-duration dermal exposure to various forms of aluminium.

When orally administered to rats, aluminium compounds (including aluminium nitrate, aluminium sulfate and potassium aluminium sulfate) have produced various effects, including decreased gain in body weight and mild histopathological changes in the spleen, kidney and liver of rats (104 mg Al/kg bw/day) and dogs (88-93 mg Al/kg bw/day) during subchronic oral exposure. Effects on nerve cells, testes, bone and stomach have been reported at higher doses. Severity of effects increased with dose.

The main toxic effects of aluminium that have been observed in experimental animals are neurotoxicity and nephrotoxicity. Neurotoxicity has also been described in patients dialysed with water containing high concentrations of aluminium, but epidemiological data on possible adverse effects in humans at lower exposures are inconsistent

Reproductive and developmental toxicity:

Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality in mice and rabbits and reduced fertility in mice. No reproductive toxicity was seen in females given aluminium nitrate by gavage or dissolved in drinking water. Multi-generation reproductive studies in which aluminium sulfate and aluminium ammonium sulfate were administered to rats in drinking water, showed no evidence of reproductive toxicity

High doses of aluminium compounds given by gavage have induced signs of embryotoxicity in mice and rats in particular, reduced fetal body weight or pup weight at birth and delayed ossification. Developmental toxicity studies in which aluminium chloride was administered by gavage to pregnant rats showed evidence of foetoxicity, but it was unclear whether the findings were secondary to maternal toxicity. A twelve-month neuro-development with aluminium citrate administered via the drinking water to Sprague-Dawley rats, was conducted according to Good Laboratory Practice (GLP). Aluminum citrate was selected for the study since it is the most soluble and bioavailable aluminium salt. Pregnant rats were exposed to aluminium citrate from gestational day 6 through lactation, and then the offspring were exposed post-weaning until postnatal day 364. An extensive functional observational battery of tests was performed at various times. Evidence of aluminium toxicity was demonstrated in the high (300 mg/kg bw/day of aluminium) and to a lesser extent, the mid-dose groups (100 mg/kg bw/day of aluminium). In the high-dose group, the main effect was renal damage, resulting in high mortality in the male offspring. No major neurological pathology or neurobehavioural effects were observed, other than in the neuromuscular subdomain (reduced grip strength and increased foot splay). Thus, the lowest observed adverse effect level (LOAEL) was 100 mg/kg bw/day and the no observed adverse effect level (NOAEL) was 30 mg/kg bw/day. Bioavailability of aluminium citrate This study was used by JECFA as key study to derive the PTWI.

8329HTC Super Thermally Conductive Adhesive (Part A) & ALUMINIUM NITRIDE

Page 16 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Genotoxicity

Aluminium compounds were non-mutagenic in bacterial and mammalian cell systems, but some produced DNA damage and effects on chromosome integrity and segregation in vitro. Clastogenic effects were also observed in vivo when aluminium sulfate was administered at high doses by gavage or by the intraperitoneal route. Several indirect mechanisms have been proposed to explain the variety of genotoxic effects elicited by aluminium sulfate must be experimental systems. Cross-linking of DNA with chromosomal proteins, interaction with microtubule assembly and mitotic spindle functioning, induction of oxidative damage, damage of lysosomal membranes with liberation of DNAase, have been suggested to explain the induction of structural chromosomal aberrations, sister chromatid exchanges, chromosome loss and formation of oxidized bases in experimental systems. The EFSA Panel noted that these indirect mechanisms of genotoxicity, occurring at relatively high levels of exposure, are unlikely to be of relevance for humans exposed to aluminium via the diet. Aluminium compounds do not cause gene mutations in either bacteria or mammalian cells. Exposure to aluminium compounds does result in both structural and numerical chromosome aberrations both in in-vitro and in-vivo mutagenicity tests. DNA damage is probably the result of indirect mechanisms. The DNA damage was observed only at high exposure levels.

Carcinogenicity.

The available epidemiological studies provide limited evidence that certain exposures in the aluminium production industry are carcinogenic to humans, giving rise to cancer of the lung and bladder. However, the aluminium exposure was confounded by exposure to other agents including polycyclic aromatic hydrocarbons, aromatic amines, nitro compounds and asbestos. There is no evidence of increased cancer risk in non-occupationally exposed persons.

Neurodegenerative diseases.

Following the observation that high levels of aluminium in dialysis fluid could cause a form of dementia in dialysis patients, a number of studies were carried out to determine if aluminium could cause dementia or cognitive impairment as a consequence of environmental exposure over long periods. Aluminium was identified, along with other elements, in the amyloid plaques that are one of the diagnostic lesions in the brain for Alzheimer disease, a common form of senile and pre-senile dementia. some of the epidemiology studies suggest the possibility of an association of Alzheimer disease with aluminium in water, but other studies do not confirm this association. All studies lack information on ingestion of aluminium from food and how concentrations of aluminium in food affect the association between aluminium in water and Alzheimer disease." There are suggestions that persons with some genetic variants may absorb more aluminium than others, but there is a need for more analytical research to determine whether aluminium from various sources has a significant causal association with Alzheimer disease and other neurodegenerative diseases.Aluminium is a neurotoxicant in experimental animals. However, most of the animal studies performed have several limitations and therefore cannot be used for quantitative risk assessment. Contact sensitivity:

It has been suggested that the body burden of aluminium may be linked to different iseases. Macrophagic myofasciitis and chronic fatigue syndrome can be caused by aluminium-containing adjuvants in vaccines. Macrophagic myofasciitis (MMF) has been described as a disease in adults presenting with ascending myalgia and severe fatigue following exposure to aluminium hydroxide-containing vaccines. The corresponding histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome.

Aluminium acts not only as an adjuvant,stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bin to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contact allergy to aluminium and persistent itching nodules in children treated with allergen-specific immunotherapy (ASIT) Nodules were overrepresented in patients with contact allergy to aluminium

Other routes of sensitisation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitisation to aluminium have been reported Systemic allergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium has been documented: pruritic nodules at present and previous injection sites, eczema at the site of vaccination as well as at typically atopic localisations after vaccination with aluminium-containing vaccines and/or patch testing with aluminium, and also after use of aluminium-containing toothpaste Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilla. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating

ALUMINIUM NITRIDE & BISPHENOL A DIGLYCIDYL ETHER RESIN, SOLID & ALUMINIUM POWDER UNCOATED

Skin Ir Serious Eve

Re

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	×
itation/Corrosion	×	Reproductivity	×
Damage/Irritation	×	STOT - Single Exposure	×
espiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×
		•	t available or does not fill the criteria for classification to make classification

11.2 Information on other hazards

11.2.1. Endocrine disrupting properties

Many chemicals may mimic or interfere with the body s hormones, known as the endocrine system. Endocrine disruptors are chemicals that can interfere with endocrine (or hormonal) systems. Endocrine disruptors interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, deformations of the body various cancers and sexual development problems. Endocrine disruptors at the same time, assessing public health effects is difficult.

11.2.2. Other information

See Section 11.1

Page 17 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

SECTION 12 Ecological information

	Endpoint	Test Duration (hr)	Species	Value	Source
8329HTC Super Thermally Conductive Adhesive (Part A)	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
oluminium nitrido	EC50(ECx)	504h	Crustacea >=0.6		2
aluminium nitride	EC50	72h	Algae or other aquatic plants	>=10.02mg/	2
	LC50	96h	Fish	~0.57mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
bisphenol A diglycidyl ether resin, solid	EC50(ECx)	24h	Crustacea		Not Available
	LC50	96h	Fish	2.4mg/l	Not Available
	EC50	48h	Crustacea	~2mg/l	2
	Endpoint	Test Duration (hr)	Species Value		Source
	NOEC(ECx)	48h	Crustacea	Crustacea >100mg/l	
oluminium nouder uncerted	EC50	96h	Algae or other aquatic plants	Algae or other aquatic plants 0.0054mg/l	
aluminium powder uncoated	EC50	72h	Algae or other aquatic plants	Algae or other aquatic plants 0.0169mg/l	
	LC50	96h	Fish	Fish 0.078-0.108mg	
	EC50	48h	Crustacea	0.7364mg/l	2
silica amorphous	Endpoint	Test Duration (hr)	Species	Value	Source
	EC0(ECx)	24h	Crustacea	>=10000mg/l	1
	EC50	96h	Algae or other aquatic plants	or other aquatic plants 217.576mg/l	
	EC50	72h	Algae or other aquatic plants	or other aquatic plants 14.1mg/l	
	LC50	96h	Fish	Fish 1033.016mg	
	EC50	48h	Crustacea	>86mg/l	2

- Bioconcentration Data 8. Vendor Data

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Freshwater algae (96 h): 2.73 mg/l

Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Page 18 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity.

Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl])methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem, Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

Significant environmental findings are limited. Oxiranes (including glycidyl ethers and alkyl oxides, and epoxides) exhibit common characteristics with respect to environmental fate and ecotoxicology. One such oxirane is ethyloxirane and data presented here may be taken as representative.

For 1,2-Butylene oxide (Ethyloxirane):

log Kow values of 0.68 and 0.86. BAF and BCF : 1 to 17 L./kg.

Aquatic Fate - Ethyloxirane is highly soluble in water and has a very low soil-adsorption coefficient, which suggests that, if released to water, adsorption of ethyloxirane to sediment and suspended solids is not expected. Volatilization of ethyloxirane from water surfaces would be expected. Ethyloxirane is hydrolysable, with a half-life of 6.5 days, and biodegradable up to 100% degradation and is not expected to persist in water. Models have predicted a biodegradation half-life in water of 15 days.

Terrestrial Fate: When released to soil, ethyloxirane is expected to have low adsorption and thus very high mobility. Volatilization from moist soil and dry soil surfaces is expected. Ethyloxirane is not expected to be persistent in soil.

Atmospheric Fate: It is expected that ethyloxirane exists solely as a vapor in ambient atmosphere. Ethyloxirane may also be removed from the atmosphere by wet deposition processes. The half-life in air is about 5.6 days from the reaction of ethyloxirane with photochemically produced hydroxyl radicals which indicates that this chemical meets the persistence criterion in air (half-life of = 2 days).

Ecotoxicity - The potential for bioaccumulation of ethyloxirane in organisms is likely to be low and has low to moderate toxicity to aquatic organisms. Ethyloxirane is acutely toxic to water fleas and toxicity values for bacteria are close to 5000 mg/L. For algae, toxicity values exceed 500 mg/L.

Microbial methylation plays important roles in the biogeochemical cycling of the metalloids and possibly in their detoxification. Many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. Antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases.

For Ammonia:

Atmospheric Fate: Ammonia reacts rapidly with available acids (mainly sulfuric, nitric, and sometimes hydrochloric acid) to form the corresponding salts. Ammonia is persistent in the air.

Aquatic Fate: Biodegrades rapidly to nitrate, producing a high oxygen demand. Non-persistent in water (half-life 2 days).

Ecotoxicity: Moderately toxic to fish under normal temperature and pH conditions and harmful to aquatic life at low concentrations. Does not concentrate in food chain. For aluminium and its compounds and salts:

Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest.

Environmental fate:

Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter.

Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake. As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH.

The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous Al(OH)3, which crystallise to gibbsite in acid waters.

Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species.

Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface.

Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, *Abies amabilis*, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants form soil, but is instead biodiluted.

Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues. The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans.

Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects.

Ecotoxicity:

Freshwater species pH >6.5

Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for *Micropterus* sp.

Amphibian: Acute LC50 (4 d): *Bufo americanus*, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L

Page 19 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

Freshwater species pH <6.5 (all between pH 4.5 and 6.0)

Fish LC50 (24-96 h): 4 spp, 0.015 (*S. trutta*) - 4.2 mg/L; chronic data on *Salmo trutta*, LC50 (21-42 d) 0.015- 0.105 mg/L Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L)

Alga: 1 sp NOEC growth 2.0 mg/L

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium is greatly reduced. The solubility of aluminium is also enhanced under alkaline conditions, due to its amphoteric character, and some researchers found that the acute toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium in freshwater organisms generally decreases with increasing water hardness under acidic, neutral and alkaline conditions. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available.

Air Quality Standards: none available.

For Amorphous Silica: Amorphous silica is chemically and biologically inert. It is not biodegradable.

Aquatic Fate: Due to its insolubility in water there is a separation at every filtration and sedimentation process. On a global scale, the level of man-made synthetic amorphous silicas (SAS) represents up to 2.4% of the dissolved silica naturally present in the aquatic environment and untreated SAS have a relatively low water solubility and an extremely low vapour pressure. Biodegradability in sewage treatment plants or in surface water is not applicable to inorganic substances like SAS.

Terrestrial Fate: Crystalline and/or amorphous silicas are common on the earth in soils and sediments, and in living organisms (e.g. diatoms), but only the dissolved form is bioavailable. On the basis of these properties it is expected that SAS released into the environment will be distributed mainly into soil/sediment. Surface treated silica will be wetted then adsorbed onto soils and sediments.

Atmospheric Fate: SAS is not expected to be distributed into the air if released.

Ecotoxicity: SAS is not toxic to environmental organisms (apart from physical desiccation in insects). SAS presents a low risk for adverse effects to the environment. For Silica:

Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (man-made or natural), or structure, (crystalline or amorphous).

Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica.

Aquatic Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water. Crystalline silica, in the form of quartz, has low solubility in water. Silicic acid plays an important role in the biological/geological/chemical cycle of silicon, especially in the ocean. Marine organisms such as diatoms, silicoflagellates and radiolarians use silicic acid in their skeletal structures and their skeletal remains leave silica in sea sediment

Ecotoxicity: Silicon is important to plant and animal life and is practically non-toxic to fish including zebrafish, and Daphnia magna water fleas.

DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient Persistence: Water/Soil		Persistence: Air
bisphenol A diglycidyl ether resin, solid	HIGH	HIGH
silica amorphous	LOW	LOW

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
bisphenol A diglycidyl ether resin, solid	LOW (LogKOW = 2.6835)
silica amorphous	LOW (LogKOW = 0.5294)

12.4. Mobility in soil

Ingredient	Mobility
bisphenol A diglycidyl ether resin, solid	LOW (KOC = 51.43)
silica amorphous	LOW (KOC = 23.74)

12.5. Results of PBT and vPvB assessment

	Р	В	т
Relevant available data	Not Available	Not Available	Not Available
PBT	×	×	×
vPvB	×	×	
PBT Criteria fulfilled?			No
vPvB	No		

12.6. Endocrine disrupting properties

The evidence linking adverse effects to endocrine disruptors is more compelling in the environment than it is in humans. Endocrine distruptors profoundly alter reproductive physiology of ecosystems and ultimately impact entire populations. Some endocrine-disrupting chemicals are slow to break-down in the environment. That characteristic makes them potentially hazardous over long periods of time. Some well established adverse effects of endocrine disruptors in various wildlife species include; eggshell-thinning, displayed of characteristics of

the opposite sex and impaired reproductive development. Other adverse changes in wildlife species that have been suggested, but not proven include; reproductive abnormalities, immune dysfunction and skeletal deformaties.

12.7. Other adverse effects

No evidence of ozone depleting properties were found in the current literature.

SECTION 13 Disposal considerations

 It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible or consult manufacturer for recycling options. Consult State Land Waste Authority for disposal. Bury or incinerate residue at an approved site. Recycle containers if possible, or dispose of in an authorised landfill.
Waste treatment options Not Available

SECTION 14 Transport information

Labels Required

For 8329HTC-50ML, 8329HTC-400ML
NOT REGULATED by Ground ADR Special Provision 375
NOT REGULATED by Air IATA Special Provision A197
NOT REGULATED by Sea IMDG per 2.10.2.7
NOT REGULATED by ADN Special Provision 274 (The provision of 3.1.2.8 apply)

Land transport (ADR-RID)

14.1. UN number or ID number	3077			
4.2. UN proper shipping name ENVIRONMENTALLY HAZARDOU		US SUBSTANCE, SC	DLID, N.O.S. (contains aluminium nitride)	
14.3. Transport hazard	Class	9		
class(es)	Subsidiary risk	Not Applicab	le	
14.4. Packing group III				
14.5. Environmental hazard Environmentally hazardous				
	Hazard identifica	tion (Kemler)	90	
	Classification cod	de	M7	
14.6. Special precautions for	Hazard Label		9	
user	Special provision	S	274 335 375 601	
	Limited quantity		5 kg	
	Tunnel Restrictio	n Code	3 (-)	

14.1. UN number	3077		
14.2. UN proper shipping name	Waste Environmentally h	nazardous substance, solid, n.o.s. (conta	ains aluminium nitride)
	ICAO/IATA Class	9	
14.3. Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable	
01035(03)	ERG Code	9L	
4.4. Packing group	10		
14.5. Environmental hazard	Environmentally hazardous		
	Special provisions		A97 A158 A179 A197 A215
	Cargo Only Packing Instructions		956
	Cargo Only Maximum Qty / Pack		400 kg
4.6. Special precautions for user	Passenger and Cargo Packing Instructions		956
4001	Passenger and Cargo Maximum Qty / Pack		400 kg
	Passenger and Cargo Limited Quantity Packing Instructions		Y956
	Passenger and Cargo Limited Maximum Qty / Pack		30 kg G

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3077		
14.2. UN proper shipping name	Waste ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)		
14.3. Transport hazard	IMDG Class 9		
class(es)	IMDG Subrisk Not Applicable		
14.4. Packing group			
14.5. Environmental hazard	Marine Pollutant		
	EMS Number F-A, S-F		
14.6. Special precautions for user	Special provisions 274 335 966 967 969		
4001	Limited Quantities 5 kg		

Inland waterways transport (ADN)

	1			
14.1. UN number	3077			
14.2. UN proper shipping name	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (contains aluminium nitride)			
14.3. Transport hazard class(es)	9 Not Applicable			
14.4. Packing group	III			
14.5. Environmental hazard	Environmentally hazard	ous		
14.6. Special precautions for user	Classification code	M7		
	Special provisions	274; 335; 375; 601		
	Limited quantity	5 kg		
	Equipment required	PP, A***		
	Fire cones number	0		

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
aluminium nitride	Not Available
bisphenol A diglycidyl ether resin, solid	Not Available
aluminium powder uncoated	Not Available
silica amorphous	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

aluminium nitride Not Available	Product name	Ship Type	
	aluminium nitride	Not Available	

Page 22 of 23

8329HTC Thermally Conductive Structural Epoxy Adhesive (Part A)

bisphenol A diglycidyl ether resin, solid Not Available aluminium powder uncoated Not Available silica amorphous Not Available	Product name	Ship Type
		Not Available
silica amorphous Not Available	aluminium powder uncoated	Not Available
	silica amorphous	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

ļ	aluminium nitride is found on the following regulatory lists
	Not Applicable

bisphenol A diglycidyl ether resin, solid is found on the following regulatory lists	
Chemical Footprint Project - Chemicals of High Concern List	International WHO List of Proposed Occupational Exposure Limit (OEL) Values for
Great Britain GB mandatory classification and labelling list (GB MCL)	Manufactured Nanomaterials (MNMS)
aluminium powder uncoated is found on the following regulatory lists	
Great Britain GB mandatory classification and labelling list (GB MCL)	UK Workplace Exposure Limits (WELs).
International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)	

silica amorphous is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

Great Britain GB Biocidal Active Substances

Great Britain GB mandatory classification and labelling (GB MCL) technical reports

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Not Classified as Carcinogenic International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

UK Workplace Exposure Limits (WELs).

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

Information according to 2012/18/EU (Seveso III):

Seveso Category E1

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (aluminium nitride; bisphenol A diglycidyl ether resin, solid; aluminium powder uncoated)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (aluminium powder uncoated)
Korea - KECI	Yes
New Zealand - NZIoC	No (aluminium nitride)
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	No (aluminium nitride)
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	14/04/2023
Initial Date	13/04/2023

Full text Risk and Hazard codes

H228	Flammable solid.
H250	Catches fire spontaneously if exposed to air.
H261	In contact with water releases flammable gases.
H314	Causes severe skin burns and eye damage.
H318	Causes serious eye damage.

H411 Toxic to aquatic life with long lasting effects.

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Classification Procedure
Skin Corrosion/Irritation Category 2, H315	Expert judgement
Serious Eye Damage/Eye Irritation Category 2, H319	Expert judgement
Sensitisation (Skin) Category 1, H317	Calculation method
Hazardous to the Aquatic Environment Long-Term Hazard Category 1, H410	Expert judgement
, EUH210	Expert judgement